

200 N. Ann Arbor St. Saline, MI 48176 V (734) 429-9100 F (734) 429-9113 [info@quantumsignalai.com](mailto:info@quantumsignal.com) [www.quantumsignalai.com](http://www.quantumsignal.com/)

Investigations Into Methods for Enhanced Damping Coefficient Separability and Shock Classification

By: Aditya "Dity" Bhatnagar

August 26, 2021

The Problem

• **Existing Explorer damping coefficient variance is on the order of separability between** good and 25% damping loss shock cases which makes thresholding unreliable

Current Correction Method: Camera Undistortion

Current Correction and Classification Methods: Undistortion

• **Camera undistortion assists in separability with rear shock cases.**

Distorted Undistorted

Current Correction and Classification Methods: Undistortion

• **Significant improvement in front damping coefficient variance**

Current Correction Method: Horizontal Velocity

Current Correction and Classification Methods: Velocity

• Rear damping coefficients have linear correlation with horizontal velocity
Median Rear Horizontal Velocity us b Rear Damping Coefficient

Current Correction and Classification Methods: Velocity

- **Linear velocity normalization reduces velocity-induced variance in rear damping coefficients**
- **Linear correction does not work for front shocks**

Classification Method: Rebound Velocity

Alternative Classification Methods: Rebound Velocity

- **Front left rebound velocities for 25% damping loss shock cases were observed to a have a significantly higher median rebound velocity**
- **Need more testing to determine if same holds true for front right**

Alternative Classification Methods: Rebound Velocity

- **Rear shocks have much more variance**
- *May* **be able to use compression velocity unreliably**

Alternative Classification Methods: Rebound Velocity

• Very little-no dependence on horizontal vehicle velocity for front rebound velocity
Median Front Rebound Velocity vs Set Number

Classification Method: Damping Acceleration

- **A critical document during shock absorber selection are the force-velocity curves.**
- **Measured force velocity curves for the Explorer:**

• **Current fitting functions assume asymmetric ideal force-velocity curve for dampers:**

• **Theory: Fitted damping coefficient is linear approximation of damping curve at specific compression/rebound velocity ranges**

Actual vs Ideal Force-Velocity Curves

- **Multiplying the fitted damping coefficient by the median vertical velocity could recreate a velocity-acceleration curve.**
	- \circ Acceleration and not velocity because physically the mathematic damping coefficient is the mechanical damping coefficient divided by mass
- **By calculating a line of best fit, we can threshold good vs. bad shocks based on how far away they are from the line of best fit**
- **No need for velocity correction as it is "built-in" to classification method**
- **Shortcoming is that we are assuming the velocity of the body is proportional to the velocity of the shock**
	- \circ Ignoring tire dynamics
	- \circ Ignoring bump
	- \circ Ignoring road inconsistencies

• **Due to the nature of the front fits, the coefficients aren't accurate and therefore don't produce clean graphs like the rears**

• **Rear Shock Classification Statistics:**

- o Sensitivity: 100%
- o Specificity: 100%

• **Front Shock Classification Statistics***

- o Sensitivity: 90%
- o Specificity: 92.5%
- **Stronger linear correlation than horizontal velocity vs rear damping coefficient for current data**

Fitting Method: Dual Frequency

• **Current fitting function accounts for non-symmetry of forcevelocity curves through separate compression/rebound damping coefficients:**

$$
y(t) = \begin{cases} Ae^{-at}\cos(\omega t + \theta) & dy \ge 0\\ Ae^{-bt}\cos(\omega t + \theta) & dy < 0 \end{cases}
$$

• **Proposed fitting function would account for non-symmetry of force-velocity curves through both separate damping coefficients and vibration frequencies:**

$$
y(t) = \begin{cases} Ae^{-at}\cos(\omega_a t + \theta) & dy \ge 0\\ Ae^{-bt}\cos(\omega_b t + \theta) & dy < 0 \end{cases}
$$

Dual Frequency Damped Cosine

Theory Review: Idealized Mass-Spring-Damper System

Alternative Fitting Function: Dual Frequency

• **Improvement in front damping coefficient variance**

Single Frequency **Dual Frequency Dual Frequency**

Alternative Fitting Function: Dual Frequency

• **Front Left Shock Classification Statistics:**

- o 3 False Positive
- \circ 1 False Negative
- o Sensitivity: 95%
- o Specificity: 92.5%
- **Better than using damping acceleration classification method**
- **Worse than using rebound velocity**
- **Very little change in rear shocks due to stronger inherent symmetry**

Fitting Method:

Completely Dissociated Underdamped Compression/Rebound

- **Damped cosine amplitude and phase angle are dependent on initial conditions as well as system parameters**
- **Proposed fitting function would separate all coefficients based on compression/rebound:**

• **Fit uniqueness becomes an issue at this level of dissociation:**

• **In order to combat fit uniqueness issues, upper and lower bounds for fit coefficients were tightened:**

Original Fit Bounds **Tightened Fit Bounds** Tightened Fit Bounds

• 874 results might have improved while 362 results worsened:

• **Multiple iterations of various start points and fit bounds didn't seem to improve results**

Fitting Method: Underdamped Compression, Critically Damped Rebound

Alternative Fitting Function: Underdamped Compression/Critically Damped Rebound

• **Since front shocks didn't have a prominent second hump, tried a fitting function that was critically damped on rebound:**

• Similar issues with fit uniqueness exist complied b Front Damping Coefficient Comparision

Fit Uniqueness and MATLAB Fitting

Damped Sine Wave

Completely dissociated compression-rebound (All four)

Underdamped/Critical (below)

JWY

Coefficient Calculation

Fit Uniqueness Possible Solution: Coefficient Calculation

- **It may be possible to calculate the four unknowns in our fit equation:** $y(t) = Ae^{-at}\cos(\omega t) + Be^{-at}\sin(\omega t)$
- **We know four boundary conditions for each half-period in the damped sine:**

Fit Uniqueness Possible Solution: Coefficient Calculation

• **System of equations after plugging in boundary conditions:**

$$
y_1-y_0=A
$$

$$
y_2 - y_0 = Ae^{-a\Delta t}\cos(\omega\Delta t) + Be^{-a\Delta t}\sin(\omega\Delta t)
$$

 $0 = \omega B - aA$

 $0 = e^{-a\Delta t} [\cos(\omega \Delta t) (\omega B - aA) - \sin(\omega \Delta t) (\omega A + aB)]$

• **No unique solution exists**

 \circ Reason behind fit uniqueness issues

• **Highly dependent on calculating ride height correctly**

Dimensionless Fit Parameter

- **Possible method to deal with fit uniqueness issue is to create a new parameter using existing fit coefficients to describe the damping state of the vehicle track**
- **Fit equation:**

$$
y(t) = \begin{cases} A_a e^{-at} \cos(\omega_a t + \theta_a) & dy \ge 0 \\ A_b e^{-bt} \cos(\omega_b t + \theta_b) & dy < 0 \end{cases}
$$

• **Fit coefficients:**

 \circ A – Amplitude [1] \circ a – Rebound damping coefficient [1/s] \circ b – Compression damping coefficient [1/s] \circ ω – Damping frequency [rad/s] \circ θ – Phase angle $\qquad \qquad$ [rad] • Π_1 = ω_a $a\theta_a$ $\Pi_4 = A_b$ $\Pi_7 =$ $A_b\omega_b$ $b\theta_h$ • $\Pi_2 =$ $\frac{\omega_b}{2}$ $b\theta_b$ $II_5 =$ \boldsymbol{a} $\frac{1}{b}$ $\left| \frac{1}{8} \right|$ $\frac{\omega_a}{}$ ω_b \cdot $\Pi_3 = A_n$ $\Pi_6 = \frac{A_a \omega_a}{2}$ $a\theta_a$ $II₉$ = $\frac{\theta_a}{\theta_a}$ $\boldsymbol{\theta}_{\boldsymbol{b}}$

• Front left Π_2 shows promise in classification use, front right is unusable $\sum_{\text{Combined From II.}}$

• **Rear constants are not as consistent as front left**

CLAMP

• **Bad shocks mix with good shocks when looking at horizontal velocity correlation**

Timeout

• **Fitting related analysis methods seem to have one issue or another for the front shocks**

- o MATLAB fitting quirks (tightening bounds, changing start points)
- o Fit Uniqueness
- o No unique solutions
- o Unclear dimensionless parameter relationships

• **"What was unique in all of the fits that were attempted?"**

- \circ The track of the vehicle body
- **"What do dampers do?"**
	- o Dissipate energy at a controlled rate

• **"What is a characteristic of bad shocks?"**

o They are MORE BOUNCY

Energy Dissipation Calculation

• **Energy stored in a spring:**

$$
U=\frac{1}{2}kx^2=\frac{1}{2}k(y_1-y_0)^2
$$

- **May be able to classify the shocks based on what percentage of energy is dissipated**
- **Compression Energy Dissipation:**

$$
E_{dissipated} = \frac{(y_2 - y_0)^2}{(y_1 - y_0)^2}
$$

- **Pro:**
	- \circ Relies on data from track itself
- **Con:**
	- o Dependent on calculating ride height correctly

Energy Dissipation Method: Results

• **Due to issues with selecting ride height properly and intrinsic variance, bad shock cases are not clearly definable**

Energy Dissipation Method: Results

Compression energy dissipation doesn't appear to rely on velocity
Compression Rate vs Horizontal Velocity

Bounciness Method

- **It may be possible to calculate a "Bounce Factor (B)" from track data**
- **First attempt was the ratio of the rebound distance to the compression distance**
- **Bad shock cases have a higher bounce factor as expected**
- **Lots of variance within runs**
- **Still dependent on velocity**
- **Other investigation avenues**
	- o Integration of "bounce time" into bounce factor

• **Method similar to damping acceleration could be used to classify rear shock cases**

• **Fronts aren't as clear as rear**

• **Velocity dependence is being impacted by some external factor**

• **Attempts to integrate horizontal velocity into bounce factor did not produce meaningful results.**

• **Attempts to integrate horizontal velocity into bounce factor did not produce meaningful results.**

Conclusions

- **Current analysis, correction, and classification methodology is sufficient for diagnosis of rear shocks**
- **The damping acceleration classification method may be used as a reliable alternative to the current velocity correction for the rears, and a less reliable classification method for the front left shock**
- **Upon further testing, the median rebound velocity classification method could prove to be extremely reliable and robust at diagnosing bad front shock cases**
- **Fitting related analysis methods perform with mixed results but in general don't perform well on front shock cases**
	- o Alternative fits
	- \circ Alternative bounds and start points
	- Coefficient calculation
	- o Dimensionless parameters

Conclusions

• **Energy Dissipation Method**

o Need more reliable ride height calculation method

• **Bounce Factor**

- o Shows promise
- \circ Could be a robust alternative to fitting and damping coefficients
- o Relies on track itself
- \circ Lots of variation as of now, methods to mitigate that could be investigated
- o External factor affecting velocity correlation needs to be identified

Future Work

- **Potential improvements dependent on AprilTag pose data viability**
	- \circ Can use rigid body kinematics to track any point on the vehicle with potentially one AprilTag or extended front/rear paths based on rear/front AprilTags
	- \circ Can log the rotation rate of the body to fit to more accurate half -car vehicle models
	- \circ Can use the pose data to remove body angle from track
- **Tire compression investigation**
	- o Relevance & Effects
- **Bump curvature investigation**
	- o Track peak location relative to bump
- **Fitting to a discrete quasi-steady state simulation**
- **Investigation of combination of front/rear tracks for half -car vehicle modeling**

Extra Slides

Alternative Fitting Function: Dual Frequency

• **Very little change in rears due to stronger symmetry**

Single Frequency **Dual Frequency Dual Frequency**

Energy Dissipation Method: Calculating Ride Height

• **In order to calculate ride height, candidate points are identified based on areas where vertical derivative is close to zero Candidate Ride Height Calculation Points**

Energy Dissipation Method: Calculating Ride Height

• **Points are selected based on their proximity to the end of the track:**

Energy Dissipation Method: Calculating Ride Height

• **Points are averaged and result is used as ride height**

Energy Dissipation Method: Ride Height Issues

- **Method fails when track does not reach equilibrium before end of tracking**
- **Second valley or even second peak can end up being selected as ride height**

Energy Dissipation Method: Ride Height Issues

• **Front right side is even worse since points before the second peak are automatically ignored, leaving no points to average so second peak is used as a fallback**

